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Abstract
We discuss the slow, nonequilibrium, dynamics of spin glasses in their
glassy phase. We briefly review the present theoretical understanding of the
spectacular phenomena observed in experiments and describe new numerical
results obtained in the first large-scale simulation of the nonequilibrium
dynamics of the three-dimensional Heisenberg spin glass.

1. Why do we study spin glass dynamics?

Spin glasses can be seen as one of the paradigms for the statistical mechanics of
impure materials. Experimentally, however, the spin glass phase is always probed via
nonequilibrium dynamic experiments, because the equilibration time of macroscopic samples
is infinite. Simulations can probe equilibrium behaviour for very moderate sizes only, so
the thermodynamic nature of the spin glass phase is still a matter of debate. It is also as a
model system that the glassy dynamics of spin glasses has been studied very extensively in
experiments, simulations, and theoretically in the last two decades [1, 2]. Although many
theories account for the simplest experimental results, such as the ageing phenomenon, early
experiments revealed several other spectacular phenomena (rejuvenation, memory, etc) that
are harder to explain, allowing one to discriminate between various approaches [3].

In recent years, several theoretical descriptions of the slow dynamics of spin glasses
described the physics in terms of a distribution of length scales whose time, t , and
temperature, T , evolution depends on the specific experimental protocol, as reviewed in [3].
Ageing is described as the slow growth of a coherence length, �T (t), reflecting quasi-
equilibrium/nonequilibrium at shorter/larger length scales. Sensitivity to perturbations of
quasi-equilibrated length scales accounts then for rejuvenation effects, while the strong
temperature dependence of the growth law �T (t) explains memory effects [4–8]. If early
numerical studies revealed the existence of such a distribution of length scales [9], its physical
relevance was critically discussed only relatively recently [10, 11]. A major problem, however,
is that most studies focused on the Edwards–Anderson model of an Ising spin glass, defined
by the Hamiltonian

H = −
∑

〈i, j〉
Ji j Si S j , (1)
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where Si = ±1, the sum is over pairs of nearest neighbours of the chosen lattice, and Ji j

is a quenched random interaction, drawn from a symmetric distribution. The interest of the
model (1) is that it has been studied very extensively so some—but only very few!—issues
have been settled, most notably the existence, for space dimensions d � 3, of a second-order
phase transition to a spin glass phase [12, 13]. The nonequilibrium dynamics of the Ising
spin glass has also been quite extensively studied. Unfortunately, for d = 3, some of the key
experimental observations are not reproduced [11, 14], although simulations in d = 4 have
been more successful [11]. This may not be too surprising, since real spin glasses are made
not of Ising spins but vector spins. When the interaction between spins is isotropic, the system
is therefore best described by the Heisenberg spin glass Hamiltonian

H = −
∑

〈i, j〉
Ji j Si · S j , (2)

where the Si are now three-component vectors of unit length. The Heisenberg spin glass has
been far less studied than the Ising one, both statically and dynamically, presumably because
it was hoped that the understanding of the apparently simpler Ising case would be sufficient
to interpret experiments. Very recent experiments systematically comparing Ising (i.e. very
anisotropic) and Heisenberg samples have shown substantial quantitative differences between
the two types of sample, the nonequilibrium effects being indeed much clearer in Heisenberg
samples [15, 16].

Hence, it can reasonably be hoped that dynamic studies of the Heisenberg spin glass in
d = 3 will reproduce the key experimental effects, with the result that deeper theoretical
knowledge of the nature of the nonequilibrium dynamics of spin glasses can be gained. In this
paper, we extract some preliminary results from the first large-scale numerical simulation of
the nonequilibrium dynamics of the three-dimensional Heisenberg spin glass [17].

2. Simulation details

We simulate the Heisenberg spin glass (2) for d = 3. The sum in (2) runs over nearest
neighbours of a cubic lattice with periodic boundary conditions. We use a heat-bath
algorithm [18] in which the updated spin has the correct Boltzmann distribution for the
instantaneous local field. This method has the advantage that a change in the spin orientation
is always made. We use a rather large simulation box of linear size L = 60, and study several
temperatures T = 0.16, 0.15, 0.14, 0.12, 0.10, 0.08, 0.04 and 0.02. Although all the quantities
we shall study are self-averaging, we use several realizations of the disorder, typically 15, to
increase the statistics of our data.

Contrary to the Ising case, the phase transition of the Heisenberg spin glass is still an
open problem. A decoupling between spin and chiral degrees of freedom was theoretically
suggested [19], while early simulations even questioned the mere existence of a phase
transition [18]. Very recent simulations involving the most efficient tools used to study the Ising
spin glass conclude that the model is characterized by a phase transition, at Tc � 0.16, where
both spins and chirality simultaneously freeze [20]. This motivates our choice for the upper
temperature studied in our dynamical approach and our use of spin variables as dynamical
objects of study.

3. What has to be measured?

Before embarking in the complex phenomenology of spin glasses, it is worth discussing the
simplest protocol one can think of to probe the spin glass phase. A ‘simple ageing’ experiment
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Figure 1. Time evolution of the energy density (3) after a quench from infinite temperature at the
initial time tw for T = 0.16, 0.15, 0.14, 0.12, 0.10, 0.08, 0.04, and 0.02 (from top to bottom).

consists of a sudden quench at initial time tw = 0 from a temperature well in the paramagnetic
phase, T � Tc, to a constant, low temperature below the spin glass transition, T < Tc. Ageing
means a very slow evolution with time tw (called the ‘age’) of the physical properties of the
system. To study this behaviour, we record two types of quantity. First, ‘one-time’ quantities
can be studied, such as the energy density of the spin glass,

e(tw) = 1

N
H. (3)

The time evolution of e(tw) for various low temperatures is presented in figure 1, from which
the slow decrease of the energy towards an asymptotic equilibrium value is indeed observed,
the sign that the dynamics is non-stationary.

We also study ‘two-time’ dynamic quantities. While experiments usually record response
functions, it is easier to measure the corresponding correlation functions in numerical work.
Here, we record the spin–spin autocorrelation function defined as

C(t + tw, tw) = 1

N

∑

i

Si (t + tw) · Si (tw). (4)

The qualitative behaviour of this function is well known, and a prototypical example is shown
in figure 2. As usual, the time decay of C(t + tw, tw) can be decomposed into two parts. For
short time separations, t � tw, the dynamics is almost independent of tw, while the later
decay, t � tw, becomes slower as tw becomes larger. Nonstationarity is reflected in the fact
that C(t + tw, tw) �= C(t). The physical interpretation is simple: since the relaxation time of the
sample is infinite, the only relevant timescale is the age of the sample tw which imposes an age-
dependent relaxation time: the older the sample, the slower its relaxation becomes. A careful
analysis of short- and long-time behaviours of C(t + tw, tw) and comparison to experimental
data is described in [17].

4. Understanding ageing in real space

The key problem is to understand the subtle slow changes that the system undergoes: what does
‘old’ or ‘young’ really mean for the sample? The answer necessarily connects to equilibrium,
since the system eventually equilibrates for tw → ∞. Moreover, the decomposition of the
decay C(t + tw, tw) between a fast stationary process and a slow non-stationary one directly
suggests the existence of some sort of local equilibrium within the sample: a spin appears
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Figure 2. Spin–spin autocorrelation function (4) as a function of the time difference t for various
tw logarithmically spaced in the interval tw ∈ [2, 57 797]; tw increases from left to right. The
temperature is T = 0.14.

Figure 3. The orientation variable cos θi defined in equation (5) is encoded in a greyscale in a
60 × 60 × 60 simulation box at three different times tw = 2, 27, and 57 797 (from left to right) and
temperature T = 0.04. The growth of a local random ordering is evident.

locally equilibrated (short-time dynamics) although the sample as a whole is still far from
equilibrium and evolves towards equilibrium (long-time dynamics).

It is possible to illustrate this last statement, as was done in the Ising case [9]. Because
of the disorder, the spin orientations in an equilibrium configuration are random, so it is
impossible to detect any domain growth by simply looking at the spin directions. However,
two systems, (a, b), evolving independently but with the same realization of the disorder will
reach correlated equilibrium configurations [13], so the orientations of the spins in the two
copies will be similar, up to a global rotation. In figure 3, we present pictures where the
‘orientation’ variable

cos θi(t) = Sa
i (t) · Sb

i (t) (5)

is encoded in a greyscale. Comparing three successive times, it becomes clear that ageing
involves the growth with time of a local random ordering imposed by the disorder of the
Hamiltonian.

It is of course possible to go beyond simple pictures of black and white domains and
measure the growing coherence length �T (t) corresponding to the mean domain size in figure 3.
For this purpose, the spatial decay of the following correlation function is recorded:

C4(r, t) = 1

N

∑

i

Sa
i (t) · Sa

i+r (t)S
b
i (t) · Sb

i+r (t). (6)
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Figure 4. Two-spin, two-replica correlation function (6) as a function of the distance r between
the spins for various tw logarithmically spaced in the interval tw ∈ [2, 57 797]; tw increases from
left to right. The temperature is T = 0.14.

This function is a straightforward generalization of the two-spin, two-replica correlation
function studied in the Ising case which measures spatial correlations of the random relative
orientation of two spins [9]. In figure 4, we show this function for the same parameters as
for the correlators of figure 2. The spatial decay of C4(r, t) is clearly slower for larger t , in
agreement with the pictures in figure 3. Physically, this means that a larger time tw implies
a slower relaxation due to a larger coherence length, very much as in standard coarsening
phenomena.

Note that due to periodic boundary conditions, the function (6) in figure 4 is symmetric
about L/2 = 30. In [19], it was argued that spin and chirality degrees of freedom undergo
different ageing dynamics because they are statically decoupled. The numerical support for this
statement was the observation, for a system of linear size L = 15, that the autocorrelation (4)
becomes stationary at large tw. From figure 6, we immediately recognize that the data of [19]
are plagued by severe finite size effects, so the conclusions of previous ageing studies of the
Heisenberg spin glass [19, 21] must be treated with some care and this justifies our numerical
effort of simulating a very large system, L = 60. The scaling properties of C4(r, t) and the
properties of the coherence length are further discussed in [17]. We make here the important
remark that much larger length scales can be reached in the same numerical time window for
the Heisenberg spin glass than for the Ising case, which may indicate that richer behaviour can
be seen in nonequilibrium simulations of the Heisenberg spin glass than the Ising ones.

5. Conclusion

We have motivated the need for large-scale numerical simulations of the three-dimensional
Heisenberg spin glass in order to fill the gap between spatial theoretical descriptions of spin
glass dynamics and experimental observations. The results presented here for the dynamics of
the model (2) show that spin variables qualitatively follow the same type of ageing behaviour
as in the Ising case, which is due to the slow growth with time of a dynamic coherence length.
In [17], we analyse in detail the scaling properties of the dynamic functions reported here. The
observation that very large length scales can be reached in the numerical time window, see
figure 4, gives us the hope, also confirmed by preliminary work, that the model will allow us
to reproduce most of the experimental effects, with the advantage that simulations have direct
access to the distributions of length scales involved in phenomenological theories, providing
further understanding of spin glass dynamics.
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